Hydrogen from Exhaust Gas Fuel Reforming: Greener, Leaner and Smoother Engines

Miroslaw L. Wyszynski Thanos Megaritis Roy S. Lehrle

Future Power Systems Group
The University of Birmingham

TE AD

Hydrogen as a Fuel

Property		Gasoline	Methanol	Methane (Nat.gas)	Hydrogen
Formula		C7.1H12.56	CH3OH	CH4	H2
Boiling Point	deg C	30 - 190	65	-161	-253
Flammability limits	% vol.	1.0 - 7.6	6.7 - 36	5.3 - 15	4 - 75
Max burning velocity in air	m/s	0.5	0.48	0.4	2.9-3.5
Net ignition energy in air	mJ	0.24	0.215	0.29	0.02
Quenching distance	mm	2.84	1.8	1.9	0.6
Heat of evaporation	MJ/kg	0.4	1.25	gas	gas
Lower Calorific Value	MJ/kg	40-45	20	50.01	120.5
Energy density (15C/100kPa)	MJ/m3	33750	15840	33.4	10.3
Mixture Calorific Value (20C)	MJ/m3	4.44	3.24	3.13	2.95

Use of Hydrogen in IC Engines

- As a pure fuel
 - Long term strategy
- As an additive to fossil fuels
 - Lean/Diluted Burn
 - Exhaust Gas Recirculation
- Problems:
 - Production Thermoeconomics
 - Storage on board
- Solution: Production on-board

Off-board produced hydrogen

- Remote energy & CO2 cost
- Lack of distribution infrastructure
- Storage problems for use on board
 - hydrides:weight & range penalty
 - compressed H2:bulk
 - liquid H2 best,
 high energy cost for liquefaction

Fuel storage requirements

Storage requirements for fuels equivalent to 55 litres gasoline

Source: Volkswagen Documentation "Alternative Fuels"

On-board Production of Hydrogen: Fuel Reforming

- Production of hydrogen on-board from hydrocarbons or alcohol
- Three main reaction paths

- steam reforming e.g. $CH_4 + H_2O = CO + 3H_2$

- direct partial oxidation $2CH_4 + O_2 = 2CO + 2H_2$

- thermal decomposition $CH_3OH = CO + 2H_2$

- Exhaust gas reforming
 - direct contact between exhaust gases and HC fuel over catalyst
 - combination of all three fundamental processes, e.g.

$$CH_4 + 0.33(CO_2 + 2H_2O + 7.52N_2) = 1.33(CO + 2H_2 + 1.88N_2)$$
 $D_RH = 220 \text{ kJ/kmol (endothermic)}$
combustion of reformed fuel:
 $(CO + 2H_2 + 1.88N_2) + 1.5(O_2 + 3.76N_2) = CO_2 + 2H_2O + 7.52N_2$

Engine-Reformer System

Parameters affecting the Quality and Quantity of Reformed Fuel

Main modes of fuel reforming with exhaust gas

- High exhaust temperature (>800-900 degC)
 - High hydrogen yield (over 30% in reformed gas)
 - Energy recovery from exhaust gas to increase CV of fuel
 - All or most fuel could be reformed
 - Possible at high engine load
- Lower temperature (500-700 degC)
 - Up to 20% hydrogen obtainable
 - Temperature may be boosted by partial oxidation
 - Mainly for hydrogen enrichment of EGR to improve combustion
 - Possible at part load, maybe at idle

Hydrogen enrichment

Increases flame speed

Gasoline Methane Hydrogen burning velocity in air (m/s) 0.5 0.4 2.9-3.5

Reduces emissions of hydrocarbons

Quenching distance (mm) 2.84 1.9 0.6

Allows higher levels of EGR (thus reduced NOx) with good combustion stability

Exhaust Reforming of Liquid Fuels (n-Heptane and Gasoline)

University of Birmingham:

ML Wyszynski, MR Jones, H West, R Chen, Y Jamal, T Wagner (Mechanical Engineering)

RS Lehrle, J Riches, D Sarson (School of Chemistry)

D Bradley, CGW Sheppard (University of Leeds)

B Parsons, D Szczupak, R Lee (Jaguar Cars)

S Wallace, D Richardson, S Shillington, M Davies (Rover Group)

Drs P Hawker & RJ Brisley, Dr J Frost (Johnson Matthey)

M Shaw (Inco Alloys International)

Dr R Mortier, Mr S Orszulik (Castrol Ltd)

SERC - MPVI, British Gas

Exhaust Gas Reforming of Gasoline

Calculated Hydrogen Concentration vs. Excess Oxidant Factor and Temperature, p=1.013 bar, Equivalence ratio 1.0

First reforming reactor

High temperature reforming results

n-Heptane:

– Peak Proportion of Hydrogen = 32.2%

– Peak Proportion of CO = 20.9%

– Highest Reactor Thermal Efficiency = 128%

Unleaded Gasoline

– Peak Proportion of Hydrogen = 19.8%

– Peak Proportion of CO = 12.0%

– Highest Reactor Thermal Efficiency = 97.2%

High/Low temperature reforming results

Component	(vol %)	HTRF-4	RF-3 (vol %)	
	(n	-heptane, 950 degC)	(ULG, 650 degC)	
Hydrogen		23.00	4.81	
Carbon mono	xide	11.00	1.68	
Carbon dioxid	le	8.40	14.52	
Nitrogen		45.90	78.81	
Methane		3.70	0.14	
Ethane		1.20	0.01	
Ethene		5.50	0.05	
Propene		1.30	0.08	

Initial test rig

Filter* refers to cylindrical glass fibre - packed filters
Filter** refers to glass fibre paper filters
All transfer lines are Heated to in excess of 150 degC unless specified otherwise

Engine-based Experimental Equipment

Emission equipment for HC speciation

Arrangements for sample transmission (all gas lines at>150oC, unless indicated otherwise)

Results of E6 Engine Tests with Reformed Fuel Added to Gasoline

- 5 to 20% of Energy Input from Reformed Fuel, balance Gasoline
- Constant Compression Ratio, Ignition Timing, Load, Speed and Throttle Setting (4/10 or 10/10)
- With the Increase of Reformed Fuel Input:
 - Decrease in Equivalence Ratio, NO and HC
 - Large Reduction (up to 70%) in Emissions of Aromatic Hydrocarbons
 - Increase in Overall Fuel Conversion Efficiency

Gasoline: Reduction of Aromatics Emissions

by the addition of reformed fuel

- gasoline operation, Ricardo E6 engine
- reformed fuel:
 23% H₂, 11% CO,
 8.4 % CO₂, 11 % C₁-C₃ HC,
 balance N₂
- individual HCs measured on-line using Mass Spectrometry

Changes in Species Content (relative to Argon Content)
Ricardo E6, CR 8, 2400 rpm, 2.6 bar imep, throttle 4/10, ign. 25 deg BTDC

% Reformed Fuel (by energy) - balance unleaded gasoline

Reforming of Natural Gas to Improve Combustion in High EGR Dilution CNG Engines

- Miroslaw L. Wyszynski,
 A. Megaritis, S. Allenby, A. Al-Ahmadi, W-C. Chang, G. Abu-Orf
 - The University of Birmingham
- S. Clarke, M.J. Davies, D. Richardson, S.A.C. Shillington, S. Wallace
 - Rover Group Ltd
- A.K. Bhattacharya, P. Hayden, J.S. Sarginson
 - University of Warwick
- J.C. Frost, S.E. Golunski
 - Johnson Matthey plc

20 P

Natural Gas as a vehicle fuel

- Benefits
 - 'Clean burning'
 - Low CO, HC and particulate emissions
 - Gaseous under normal conditions
 - Excellent antiknock properties (equivalent RON 130)
- Disadvantages
 - High NO_x emissions
 - Low flame speed
 - Difficult to burn at high dilution
 - Difficult to burn with high EGR fraction

The Test Engine

- Purpose built 'Medusa' (R. Stone) single cylinder engine
- One quarter of Rover K16 (1800/4) cylinder head
- Instrumentation
 - Pressure transducer mounted in cylinder
 - Digital shaft encoder for crank angle
 - Thermocouples and pressure gauges
- Analysis
 - In-house LabVIEW based software performs data acquisition, analysis and statistics
 - Output includes peak and average pressures, average and percentage COV of IMEP

Future Power Systems Group

"The future begins in the past"

TO SEE

Exhaust Gas Recirculation

- Addition of exhaust gases to inlet charge
 - dilution reduces flame temperature and speed
 - similar effect to 'lean burn'
 - reduces NO_x more effectively than same volume excess air
 - allows engine to run stoichiometric with respect to oxygen
 - three way catalytic converter can be used
 - less throttling: reduced pumping losses
- Limit to amount of EGR tolerated
 - high levels lead to unacceptable combustion variability

Typical pressure data for low / high COV of IMEP

1.44 % COV of IMEP

NG, baseline (no EGR), 2000 rpm, 2.04 bar IMEP, 97 cons. cycles, inlet manif. press. -0.06/-0.36 bar, ign -37 deg (BTDC), ave. delay 29 deg, 50% burn +9.4 deg, total duration 67 deg, COV peak pressure 8.87%, (990513/d3a)

16.79 % COV of IMEP

NG, approx 12% EGR, 2000 rpm, 1.99 bar IMEP, 99 cons. cycles, inlet manif. press. -0.06/-0.31 bar, ign -56 deg (BTDC), ave. delay 46 deg, 50% burn + 11 deg, total duration 91 deg, COV peak pressure 17.09 % (990513/d25a)

Both sets: noise elimination using 3pt smoothing with 1% trigger, 5 passes

IMEP:

indicated mean effective pressure (equivalent of indicated power)

COV:

coefficient of variation

5% COV of IMEP is normally acceptable

Variation of Emissions Levels with EGR Proportion

Exhaust emissions with varying EGR proportion at 2000rpm, 2bar IMEP, fixed ignition timing strategy

Effect of EGR and hydrogen on stability

50 100 150 200 250 300 350 400 450 500

Future Power Systems Group

Percentage Hydrogen in inlet charge (by volume)

TE ADD

Analysis of Pressure Data for Burn Duration

Ignition at 329 deg CA (31deg BTDC)

Combustion delay of 25 deg CA before first 5% of fuel is burned

Effects of Hydrogen and EGR on Burn Duration

Envelope of Benefits Testing

- Aim
 - envelope of benefits for addition of hydrogen and synthetic reformate at high levels of EGR
- Procedure
 - Increase proportion of EGR until combustion unacceptably variable
 - » signified by COV of IMEP greater than 5%
 - Record full data set
 - Increase proportion of hydrogen or synthetic reformate until COV within set limit
 - Record full data set
- Data obtained tracks line of 5% COV of IMEP in steps

Combustion Stability

The proportion of synthetic reformate (75% H2 / 25% CO) added to the mains NG fuel vs. % EGR. 2000rpm, 2bar IMEP, fixed ignition timing. %COV shown for each data point.

Hydrogen in EGR needed for 5% COV of IMEP

Percentage H2 required in EGR for given EGR % (data from H2 and H2/CO tests)

Extension of EGR tolerance

The extension to EGR tolerance available through the use of reformed EGR.

Bars show maximum volumetric EGR percentage available with a COV of IMEP no greater than 5%.

Series are for EGR with no hydrogen content, 10% hydrogen, and the maximum hydrogen percentage tested for each operating condition.

Hydrocarbon emissions vs EGR% with hydrogen addition sufficient to maintain COV <5% 180 160 140 120 1500rpm 2bar mix 1500rpm 2bar H2 40 40 40 20 0 5 10 15 20 25 30 EGR%

Emissions Results

Reforming Catalyst: Test Rig

Designed & constructed to test performance of catalysts

- Catalyst loaded into mini-reactor
- Mounted inside temperature-controlled tube furnace at 700°C
- Controlled flow of exhaust gas and 10% by volume natural gas
- Gas Hourly Space Velocity = 10⁵ (similar to TWC)
- Lines heated to prevent condensation of water
- Samples of reactor product taken at regular intervals

Schematic and Typical Results

Reforming reactor is fed exhaust gas and natural gas (ratio 10:1) producing hydrogen rich reformed EGR stream.

Catalyst Testing: Results

Catalyst test results using an engine-linked micro reactor system. Progressive improvement in performance can be seen, with iteration 3 capable of producing an EGR stream containing more than 20% H₂.

Analyte	Reactor Inlet (typical)	Reactor product (%) @700 degC, 6hrs, PGM Cat. Iteration 1	Reactor product (%) @724 degC, 2¼hrs, PGM Cat. Iteration 2	Reactor product (%) @690 degC, 2¼hrs, PGM Cat. Iteration 3
H ₂	0.6	5.8	18.4	21.9
O_2	0.7	0.2	0.1	<0.1
N_2	77.1	72.7	63.2	60.6
CO	0.4	2.2	8.1	11.4
CO ₂	11.7	11.3	8.1	5.9
CH₄	9.2	8.6	3.1	1.3
C_2H_6	0.61	0.34	28 vpm	247 vpm

Conclusions - reforming of Natural Gas:

- Use of EGR with addition of reformed fuel offers significant emissions improvements
- Tolerance of NG engine to EGR
 (as measured by combustion stability)
 can be greatly extended by addition of reformed fuel
- Currently available prototype catalysts can be used to produce a reformed fuel of the required composition (over 20% hydrogen) from exhaust gases with natural gas added

Proposed Applications of Fuel Reforming

To extend utilisation of fuels, reduce emissions, improve efficiency:

- fuel reforming for <u>efficiency improvements and reduction of</u> <u>emissions</u> in homogeneous stoichiometric modes of operation of liquid and gas fuelled engines with EGR,
- HCCI (Homogeneous Charge Compression Ignition) mode with fuel reforming to deliver controlled proportions of hydrogen and active radicals
- <u>hybrid ICE / electrical vehicle propulsion,</u> where IC engine and fuel reforming system can be optimised for one or two regimes
- reforming hydrogen-containing fuels so that <u>different fuels can all be used in a specified IC engine type</u>,
- selective use of reforming to convert a <u>single strategic fuel</u> to become usable in any IC engine,
- the use of reforming to enhance low quality diesel fuels and biodiesel mixtures,

Possible Modes of Operation of an Engine / Reformer System - 1

1: Some fuel reformed and returned as reformed EGR to improve combustion and reduce emissions at high dilution.

Possible Modes of Operation of an Engine / Reformer System - 2

2: Some fuel reformed and mixed with raw fuel for direct injection to chamber. Unreformed EGR can be used, reformed fuel used to improve combustion of difficult sprays.

Possible Modes of Operation of an Engine / Reformer System - 3

- 3: Fuel directly injected to chamber, some fed into reformer to produce reformed EGR
 - 3a. For stoichiometric range of GDI operation: energy recovery from exhaust
 - 3b. For CI engines: reduction of smoke by very lean but combustible 'end gas' containing reformed EGR
 - 3c. For HCCI: with very early direct injection of fuel and reactivity of charge controllable by reformed EGR

Future Power Systems Group

Methanol Reformer in a PEFC Propulsion System

Dynamic Response of a Methanol Steam Reformer

 Simulations carried out by ANL to optimise the warm-up performance of their methanol reformer (packed bed).

Simulate performance of a Monolith Reformer.

Reactant: CH₃OH, H₂O

Reformate: H₂, CO₂, CO

Future Power Systems Group

Methanol Conversion Predictions

Future Power Systems Group

Hydrogen for aviation - 1

Design studies of liquid H2 and kerosene fuelled airliners

"The future begins in the past"

Hydrogen for aviation - 2

Hydrogen for aviation - 3

Comparison: Kerosene vs. Liquid H2 fuelled long-range passenger aircraft, designed for 400 passengers, 10200 km (5500 nm), Mach 0.85 cruise

	Kerosene	Liquid H2	
Take-off gross weight (kg)	237280	177640	
Total fuel weight (kg)	86530	27940	
Wing area (m2)	389.0	312.5	
Wing loading, take-off (Pa)	5983	5575	
Weight fractions (percentage)			
Fuel	36.5	15.7	
Payload	16.8	22.5	
Structure	26.0	30.7	
Propulsion	6.4	12.3	
Equipment, etc.	14.3	18.8	
Energy used (kJ / seat km)	778.1	705.5	

source: ProcInstMechEng Vol211 (1997) PtG, p.6

E PO

Hydrogen as a Fuel

Property	Unit	Gasoline	Methanol	Methane (Nat.gas)	Hydrogen
Formula		C7.1H12.56	СНЗОН	CH4	H2
Molar mass	kg/kmol	98	32	16	2
Boiling Point	deg C	30 - 190	65	-161	-253
Density liquid	kg/m3	730 - 780	792	424	71
gas (STP)	_			0.72	0.09
Vapour pressure	bar	0.45 - 0.9	0.317	gas	gas
Ignition Temp. in Air	deg C	371	470	632	572
flammability limits	% vol.	1.0 - 7.6	6.7 - 36	5.3 - 15	4 - 75
flammability limits	equiv. ratio	0.71 - 2.5	0.54-2.93	0.47 - 1.43	0.1 - 2.0
max Burning velocity in air	m/s	0.5	0.48	0.4	2.9-3.5
Flame Temperature in air	K	2470 ?	2230	2326	2524
		2394 (liq.C8H18)			
Net ignition energy in air	mJ	0.24	0.215	0.29	0.02
Quenching distance	mm	2.84	1.8	1.9	0.6
stoichi. A/F ratio (mass)	-	14.7	6.44	17.2	34.2
stoichi. A/F ratio (volume)	-	6.85	7.14	9.52	2.38
Heat of evaporation	MJ/kg	0.4	1.25	gas	gas
Lower Calorific Value	MJ/kg	40-45	20	50.01	120.5
Energy density (15C/100 kPa)	MJ(LCV)/m3	33750	15840	33.4	10.3
Mixture density (20C/100 kPa)	kg/m3	1.551	1.206	1.139	0.862
Mixture Calorific Value (20C)	MJ(LCV)/m3	4.44	3.24	3.13	2.95
CO2 prod. on-board/ energy	g/MJ (LCV) (liq C8H18)	69.4 (liquid)	68.9	54.8	0

