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Hydrogen as a Fuel
Property                Gasoline Methanol Methane Hydrogen

(Nat.gas)
Formula              C7.1H12.56 CH3OH CH4 H2
Boiling Point deg C 30 - 190 65 -161 -253

Flammability limits % vol. 1.0 - 7.6 6.7 - 36 5.3 - 15 4 - 75
Max burning velocity in air m/s 0.5 0.48 0.4 2.9-3.5
Net ignition energy in air mJ 0.24 0.215 0.29 0.02

Quenching distance mm 2.84 1.8 1.9 0.6

Heat of evaporation MJ/kg 0.4 1.25 gas gas

Lower Calorific Value MJ/kg 40-45 20 50.01 120.5
Energy density (15C/100kPa) MJ/m3 33750 15840 33.4 10.3
Mixture Calorific Value (20C) MJ/m3 4.44 3.24 3.13 2.95
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Use of Hydrogen in IC Engines

• As a pure fuel
– Long term strategy

• As an additive to fossil fuels
– Lean/Diluted Burn
– Exhaust Gas Recirculation

• Problems:
– Production Thermoeconomics
– Storage on board

• Solution: Production on-board
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Off-board produced hydrogen

• Remote energy & CO2 cost
• Lack of distribution infrastructure
• Storage problems for use on board

– hydrides:
weight & range penalty

– compressed H2:
bulk

– liquid H2 - best,
high energy cost for liquefaction
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Fuel storage requirements
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On-board Production of Hydrogen:
Fuel Reforming
• Production of hydrogen on-board from hydrocarbons or alcohol
• Three main reaction paths

– steam reforming e.g. CH4 + H2O = CO + 3H2

– direct partial oxidation 2CH4 + O2 = 2CO + 2H2

– thermal decomposition CH3OH = CO + 2H2

• Exhaust gas reforming
– direct contact between exhaust gases and HC fuel over catalyst
– combination of all three fundamental processes, e.g.

CH4 + 0.33(CO2 + 2H2O + 7.52N2) = 1.33(CO + 2H2 + 1.88N2)
∆RH = 220 kJ/kmol  (endothermic)

combustion of reformed fuel:
(CO + 2H2 + 1.88N2) + 1.5(O2 + 3.76N2) = CO2 + 2H2O + 7.52N2
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Engine-Reformer System
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Parameters affecting the Quality and
Quantity of Reformed Fuel

Quality and Quantity 
of Reformed fuel

Engine operation  
- transient 
-stationary Operation time  

- engine warm up

Surplus Energy 
in the Exhaust

Exhaust Mass 
Flowrate

Reactor designCatalyst

Location of 
Reactor

Exhaust composition

Engine design  
-lean burn 
-EGR 
-turbocharger 
-supercharger

Supplied fuel

Fuel, Air, Water input 
into Reforming Reactor
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Main modes of fuel reforming with
exhaust gas
• High exhaust temperature (>800-900 degC)

– High hydrogen yield (over 30% in reformed gas)
– Energy recovery from exhaust gas to increase CV of fuel
– All or most fuel could be reformed
– Possible at high engine load

• Lower temperature (500-700 degC)
– Up to 20% hydrogen obtainable
– Temperature may be boosted by partial oxidation
– Mainly for hydrogen enrichment of EGR to improve combustion
– Possible at part load, maybe at idle
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Hydrogen enrichment

• Increases flame speed
Gasoline  Methane      Hydrogen

burning velocity in air (m/s) 0.5    0.4 2.9-3.5

• Reduces emissions of hydrocarbons

Quenching distance (mm) 2.84    1.9 0.6

• Allows higher levels of EGR (thus reduced NOx)
with good combustion stability
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Exhaust Reforming of Liquid Fuels
(n-Heptane and Gasoline)
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Exhaust Gas Reforming of Gasoline
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First reforming reactor
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High temperature reforming results

• n-Heptane:
– Peak Proportion of Hydrogen = 32.2%
– Peak Proportion of CO = 20.9%
– Highest Reactor Thermal Efficiency = 128%

• Unleaded Gasoline
– Peak Proportion of Hydrogen = 19.8%
– Peak Proportion of CO = 12.0%
– Highest Reactor Thermal Efficiency = 97.2%
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High/Low temperature reforming results

Component  (vol %) HTRF-4  RF-3 (vol %)
(n-heptane, 950 degC)      (ULG, 650 degC)

Hydrogen 23.00    4.81
Carbon monoxide 11.00     1.68
Carbon dioxide   8.40 14.52
Nitrogen 45.90 78.81
Methane    3.70   0.14
Ethane     1.20   0.01
Ethene    5.50   0.05
Propene    1.30    0.08
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Initial test rig
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Emission equipment for HC speciation
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Results of E6 Engine Tests
with Reformed Fuel Added to Gasoline

• 5 to 20% of Energy Input from Reformed Fuel,
balance Gasoline

• Constant Compression Ratio, Ignition Timing,
Load, Speed and Throttle Setting (4/10 or 10/10)

• With the Increase of Reformed Fuel Input:
– Decrease in Equivalence Ratio, NO and HC
– Large Reduction (up to 70%) in Emissions of

Aromatic Hydrocarbons
– Increase in Overall Fuel Conversion Efficiency
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Gasoline:
Reduction of Aromatics Emissions
by the addition of reformed fuel

• gasoline operation,
Ricardo E6 engine

• reformed fuel:
23% H2, 11% CO,
8.4 % CO2, 11 % C1-C3 HC,
balance N2

• individual HCs measured
on-line
using Mass Spectrometry

Changes in Species Content (relative to Argon Content)
Ricardo E6, CR 8, 2400 rpm, 2.6 bar imep, throttle 4/10, ign. 25 deg BTDC 
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Reforming of Natural Gas
to Improve Combustion
in High EGR Dilution CNG Engines
• Miroslaw L. Wyszynski,

A. Megaritis, S. Allenby, A. Al-Ahmadi, W-C. Chang, G.
Abu-Orf

– The University of Birmingham

• S. Clarke, M.J. Davies, D. Richardson, S.A.C. Shillington,
S. Wallace

– Rover Group Ltd
• A.K. Bhattacharya, P. Hayden, J.S. Sarginson

– University of Warwick

• J.C. Frost, S.E. Golunski
– Johnson Matthey plc
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Natural Gas as a vehicle fuel

• Benefits
– ‘Clean burning’
– Low CO, HC and particulate emissions
– Gaseous under normal conditions
– Excellent antiknock properties (equivalent RON 130)

• Disadvantages
– High NOx emissions
– Low flame speed
– Difficult to burn at high dilution
– Difficult to burn with high EGR fraction
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The Test Engine
• Purpose built ‘Medusa’ (R. Stone) single cylinder engine
• One quarter of Rover K16 (1800/4) cylinder head
• Instrumentation

– Pressure transducer mounted in cylinder
– Digital shaft encoder for crank angle
– Thermocouples and pressure gauges

• Analysis
– In-house LabVIEW based software performs data acquisition,

analysis and statistics
– Output includes peak and average pressures, average  and

percentage COV of IMEP



23

Future Power Systems Group

“The future begins in the past”



24

Future Power Systems Group

“The future begins in the past”

Exhaust Gas Recirculation

• Addition of exhaust gases to inlet charge
– dilution reduces flame temperature and speed
– similar effect to ‘lean burn’
– reduces NOx more effectively than same volume

excess air
– allows engine to run stoichiometric with respect to

oxygen
– three way catalytic converter can be used
– less throttling: reduced pumping losses

• Limit to amount of EGR tolerated
– high levels lead to unacceptable combustion

variability
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Typical pressure data
for low / high COV of IMEP

1.44 % COV of IMEP
NG, baseline (no EGR), 2000 rpm, 2.04 bar IMEP,
97 cons. cycles, inlet manif. press. -0.06/-0.36 bar,
ign -37 deg (BTDC), ave. delay 29 deg,
50% burn +9.4 deg, total duration 67 deg,
COV peak pressure 8.87%, (990513/d3a)

16.79 % COV of IMEP
NG, approx 12% EGR, 2000 rpm, 1.99 bar IMEP,
99 cons. cycles, inlet manif. press. -0.06/-0.31 bar,
ign -56 deg (BTDC), ave. delay  46 deg,
50% burn + 11 deg, total duration 91 deg,
COV peak pressure 17.09 % (990513/d25a)

Both sets:
noise
elimination
using
3pt smoothing
with 1% trigger,
5 passes

IMEP:
indicated mean
effective
pressure
(equivalent of
indicated
power)

COV:
coefficient of
variation

5% COV of
IMEP is
normally
acceptable
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Variation of Emissions Levels
with EGR Proportion
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Reduction in NO emission
corresponding to a given
volumetric percentage of
EGR.  Reduction of the 
order of 80% but stability 
not maintained.0
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Analysis of Pressure Data for Burn Duration

Ignition at 329 deg
CA

(31deg BTDC)

Combustion delay
of 25 deg CA
before first 5% of
fuel is burned
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Effects of Hydrogen and EGR
on Burn Duration
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Envelope of Benefits Testing

• Aim
– envelope of benefits for addition of hydrogen and synthetic

reformate at high levels of EGR
• Procedure

– Increase proportion of EGR until combustion unacceptably
variable

» signified by COV of IMEP greater than 5%
– Record full data set
– Increase proportion of hydrogen or synthetic reformate until

COV within set limit
– Record full data set

• Data obtained tracks line of 5% COV of IMEP in steps
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Combustion Stability
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Hydrogen in EGR needed for 5% COV of IMEP

Percentage H2 required in EGR for given EGR %
(data from H2 and H2/CO tests)
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NO emissions vs EGR% with hydrogen addition 
sufficient to maintain COV <5%
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Reforming Catalyst: Test Rig
Designed & constructed
to test performance of catalysts

– Catalyst loaded into mini-reactor
– Mounted inside temperature-controlled tube

furnace at 700ºC
– Controlled flow of exhaust gas and 10% by volume

natural gas
– Gas Hourly Space Velocity = 10^5 (similar to TWC)
– Lines heated to prevent condensation of water
– Samples of reactor product taken at regular

intervals
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Schematic and Typical Results

MEDUSA/
ROVER K4
S.I.ENGINE

EGR

Proposed Closed Loop

INLET
MANIFOLD

AIR

NG (85% CH4)

H2 or H2/CO
to maintain

combustion stability

0.5% CO
11% CO2
21% H2O
0.5% H2

REFORMER
700-800°C

Exhaust Gas

Reformed Gas

11% CO
6% CO2
22% H2

some H2O

Reforming reactor is fed exhaust gas and natural gas (ratio 10:1)
producing hydrogen rich reformed EGR stream.
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Catalyst Testing: Results

Analyte Reactor 
Inlet 

(typical) 

Reactor product (%) 
@700 degC, 6hrs, 

PGM Cat. Iteration 1 

Reactor product (%) 
@724 degC, 2¼hrs, 
PGM Cat. Iteration 2 

Reactor product (%) 
@690 degC, 2¼hrs, 
PGM Cat. Iteration 3 

H2 0.6 5.8 18.4 21.9 

O2 0.7 0.2 0.1 <0.1 

N2 77.1 72.7 63.2 60.6 

CO 0.4 2.2 8.1 11.4 

CO2 11.7 11.3 8.1 5.9 

CH4 9.2 8.6 3.1 1.3 

C2H6 0.61 0.34 28 vpm 247 vpm 

 

Catalyst test results using an engine-linked micro reactor system.
Progressive  improvement in performance can be seen, with iteration 3
capable of producing an EGR stream containing more than 20% H2.
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Conclusions - reforming of Natural Gas:

• Use of EGR with addition of reformed fuel
offers significant emissions improvements

• Tolerance of NG engine to EGR
(as measured by combustion stability)
can be greatly extended by addition of reformed fuel

• Currently available prototype catalysts
can be used to produce a reformed fuel
of the required composition (over 20% hydrogen)
from exhaust gases with natural gas added
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Proposed Applications of Fuel Reforming
To extend utilisation of fuels, reduce emissions, improve efficiency:
• fuel reforming for efficiency improvements and reduction of

emissions in homogeneous stoichiometric modes of operation of
liquid and gas fuelled engines with EGR,

• HCCI (Homogeneous Charge Compression Ignition) mode with fuel
reforming to deliver controlled proportions of hydrogen and active
radicals

• hybrid ICE / electrical vehicle propulsion, where IC engine and fuel
reforming system can be optimised for one or two regimes

• reforming hydrogen-containing fuels
so that different fuels can all be used in a specified IC engine type,

• selective use of reforming to convert a single strategic fuel
to become usable in any IC engine,

• the use of reforming to enhance low quality diesel fuels and bio-
diesel mixtures,
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Possible Modes of Operation
of an Engine / Reformer System - 1

ReformerIC Engine
Homogeneous

Charge
SI

Inlet
manifold

Heat exchange only

reformed EGR

airexhaust

raw fuel

air

raw fuel

1: Some fuel reformed and returned as reformed EGR
to improve combustion and reduce emissions at
high dilution.
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Possible Modes of Operation
of an Engine / Reformer System - 2

ReformerIC Engine
Stratified charge

SI or CI

Inlet
manifold

Heat exchange only

unreformed EGR

(DI)

airexhaust

raw fuel

air

raw fuel

reformed fuel

2: Some fuel reformed and mixed with raw fuel for
direct injection to chamber. Unreformed EGR can
be used, reformed fuel used to improve combustion
of difficult sprays.
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Possible Modes of Operation
of an Engine / Reformer System - 3

ReformerIC Engine
homogeneous

or stratified charge,
SI or CI

Inlet
manifold

Heat exchange only

reformed EGR

(DI)

airexhaust

raw fuel

air

raw fuel

3: Fuel directly injected to chamber, some fed into reformer to produce
reformed EGR

3a. For stoichiometric range of GDI operation: energy recovery from exhaust
3b. For CI engines: reduction of smoke by very lean but combustible ‘end gas’

containing reformed EGR
3c. For HCCI: with very early direct injection of fuel and reactivity of charge

controllable by reformed EGR 
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Methanol Reformer in a PEFC Propulsion System

Cathode
ExhaustAir PEFC

Fuel Cell

CO
Removal

Afterburner

Fuel Reformer

Anode Reject Gas

Power

Reformate +CO

Hot
Exhaust

Gas
Air

Cold
Exhaust

Gas

Reformate

Fuel + Steam
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Dynamic Response of a Methanol Steam Reformer

lSimulations carried out by ANL to optimise the warm-up
performance of their methanol reformer (packed bed).

lSimulate performance of a Monolith Reformer.

Reactant
HOT GAS

HOT GASReactant : CH3OH, H20

Reformate : H2, CO2, CO
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Methanol Conversion Predictions
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Hydrogen for aviation - 1
Design studies of liquid H2 and kerosene fuelled airliners

source: ProcInstMechEng Vol211 (1997) PtG, p.6
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Hydrogen for aviation - 2
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Hydrogen for aviation - 3
Comparison: Kerosene vs. Liquid H2 fuelled
long-range passenger aircraft, designed for 400
passengers, 10200 km (5500 nm), Mach 0.85 cruise

Kerosene Liquid H2

Take-off gross weight (kg) 237280 177640
Total fuel weight (kg) 86530 27940
Wing area (m2) 389.0 312.5
Wing loading, take-off (Pa) 5983 5575
Weight fractions (percentage)
Fuel 36.5 15.7
Payload 16.8 22.5
Structure 26.0 30.7
Propulsion 6.4 12.3
Equipment, etc. 14.3 18.8

Energy used (kJ / seat km) 778.1 705.5

source: ProcInstMechEng Vol211 (1997) PtG, p.6
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Hydrogen as a Fuel
Property Unit Gasoline Methanol Methane Hydrogen

(Nat.gas)
Formula C7.1H12.56 CH3OH CH4 H2
Molar mass kg/kmol 98 32 16 2
Boiling Point deg C 30 - 190 65 -161 -253
Density  liquid kg/m3 730 - 780 792 424 71

gas (STP) 0.72 0.09
Vapour pressure bar 0.45 - 0.9  0.317 gas gas
Ignition Temp. in Air deg C 371 470 632 572
flammability limits % vol. 1.0 - 7.6 6.7 - 36 5.3 - 15 4 - 75
flammability limits equiv. ratio 0.71 - 2.5 0.54-2.93 0.47 - 1.43 0.1 - 2.0
max Burning velocity in air m/s 0.5 0.48 0.4 2.9-3.5
Flame Temperature in air K 2470  ? 2230 2326 2524

2394 (liq.C8H18)
Net ignition energy in air mJ 0.24 0.215 0.29 0.02
Quenching distance mm 2.84 1.8 1.9 0.6
stoichi. A/F ratio (mass) - 14.7 6.44 17.2 34.2
stoichi. A/F ratio (volume)  - 6.85 7.14 9.52 2.38
Heat of evaporation MJ/kg 0.4 1.25 gas gas
Lower Calorific Value MJ/kg 40-45 20 50.01 120.5
Energy density (15C/100 kPa) MJ(LCV)/m3 33750 15840 33.4 10.3
Mixture density (20C/100 kPa) kg/m3 1.551 1.206 1.139 0.862
Mixture Calorific Value (20C) MJ(LCV)/m3 4.44 3.24 3.13 2.95
CO2 prod. on-board/ energy g/MJ (LCV) 69.4 68.9 54.8 0

(liq C8H18) (liquid)


